-
- job
- Posted 21 hours ago
JRF/Associate Research Scientist - Computational medicinal chemistry
At Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India -
- job
- Posted 3 days ago
Associate Research Scientist, Structural Biology
At Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India -
- job
- Posted 1 week ago
Research Associate
At GVK Biosciences in Hyderabad, India -
- conference
- Posted 2 weeks ago
International Conference on Signal Processing and Communication
Between 7 Mar and 9 Mar in Noida, India -
- job
- Posted 2 weeks ago
Team lead/Senior Research Scientist
At Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India -
- insight
- Posted 1 month ago
The lives of female scientists in India are being chronicled online
More than 100 researchers describe their work and the struggles they face, including gender bias and achieving a positive work–life balance. Two science journalists in India continue to build on The Life of Science, a multimedia website that they designed and launched in 2016 to highlight the research and lives of more than 100 women in the country. The site, founded and run by Nandita Jayaraj and Aashima Dogra, aims to chronicle the scientists’ experiences in the lab and field. Jayaraj and Dogra, who work full-time on the site, compile feature stories, blogposts, podcasts, video and picture features about the women, whose work spans the fields of science, technology, engineering and mathematics (STEM). The journalists met in 2014 in Bangalore, while working on a now-defunct children’s science magazine. When this shut down in 2015, they decided to explore their mutual interest in science communication. Dogra had already planned to travel the country on a brief busman’s holiday, and visited the Indian Agricultural Research Institute in Kalimpong to talk to women who worked there. Meanwhile, Jayaraj was interviewing geophysicist Kusala Rajendran at the Indian Institute of Science in Bangalore and biophysicist Aruna Dhathathreyan at the Central Leather Research Institute in Chennai. When the two journalists conferred about the information they had gathered, they decided to create a website to publicize the stories. “We were curious about the science under way in laboratories in our back yard,” says Jayaraj about the site’s early days. “We also wanted to break the stereotype of the scientist as an old male person.” As the two began writing full-time, they crowdfunded for their work on the Indian platform BitGiving. Jayaraj and Dogra have since launched a second campaign to fund their work on the site, which includes compiling some of the content into two books. Each scientist’s story offers a glimpse into her world — from the physical environment in which she lives and works, to the nature of her research and how she reached her present position. “I particularly like how the narratives let us see the woman behind the science and scientific journey,” says Vidita Vaidya, a neuroscientist at the Tata Institute of Fundamental Research in Mumbai, who is featured on the site. The site showcases India’s diverse research landscape. Some of the scientists work with state-of-the-art equipment such as dilution refrigerators, confocal microscopes and high-performance computing clusters; others make the most of sparse funds and scant supplies. Yet the stories’ common threads resonate with many others who aspire to, or are navigating, a scientific career: the struggles to balance family life and career, and to counter bias and stereotypes. The interviewees offer ideas for ameliorating some of the struggles, such as establishing campus child-care facilities and promoting female scientists into leadership positions. “Nothing on this scale has ever been done before,” says Vaidya. She hopes that the site can help bring together those who are profiled, as well as other women who work in STEM in India. Jayaraj and Dogra continue to find more women to profile. Viewer numbers and other metrics are not available, but the developers intend to continue the site in perpetuity. Indian online news sites including The Wire and Firstpost have syndicated some of the articles. Those profiled are delighted at the chance to connect with readers. Number theorist Kaneenika Sinha at the Indian Institute of Science Education and Research in Pune has received e-mails from parents seeking suggestions for training their mathematically talented child, junior scientists who plan to repatriate and want ‘insider’ information, and students with questions about her work. Jayaraj and Dogra are experimenting with different formats, including photo stories, cartoons and podcasts. “We see The Life of Science not really as an entity or ‘our’ project,” the two say, “but what it stands for — and that is the voices of women in science.”
-
- conference
- Posted 3 weeks ago
International Conference On Big Data, Machine Learning and Applications (BigDML 2019)
Between 16 Dec and 19 Dec in Silchar, India -
- job
- Posted 1 month ago
Senior Scientist – Molecular Biologist/Assay Development
At Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India -
- job
- Posted 1 month ago
Senior Scientist
At Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India -
- job
- Posted 1 month ago
Postdoctoral Fellow/Research Associate
At Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India -
- job
- Posted 1 month ago
Junior Research Fellow Position in Shravanti's lab
At Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India -
- job
- Posted 1 month ago
Scientific Manager
At GVK Biosciences in Hyderabad, India -
- job
- Posted 1 month ago
Research Associate
At GVK Biosciences in Hyderabad, India -
- job
- Posted 1 month ago
Research Associate
At GVK Biosciences in Hyderabad, India -
- job
- Posted 1 month ago
Research Associate
At GVK Biosciences in Hyderabad, India -
- job
- Posted 2 months ago
Faculty Positions at all levels
At INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH (IISER), BHOPAL in Bhopal, India -
- job
- Posted 2 months ago
QA Analyst
At Ellucian in Bengaluru, India -
- job
- Posted 2 months ago
Faculty Positions at the Department of Biological Sciences
At Tata Institute of Fundamental Research in Mumbai, India -
- conference
- Posted 2 months ago
International Conference on Signal Processing and Communication
Between 7 Mar and 9 Mar in Noida, India -
- job
- Posted 2 months ago
PhD student position in Electrochemistry, Electro-Catalysis and Biosensors
At SRM University in Kanchipuram, India -
- job
- Posted 3 months ago
Prospective Faculty
At Solid State and Structural Chemistry Unit (SSCU) in Bengaluru, India -
- job
- Posted 3 months ago
Sr. Project Assistant & Project Assistant (Admin)
At Indian Institute of Technology in New Delhi, India -
- insight
- Posted 4 months ago
India’s Commitment to Science Begins to Pay Off
Illustration by Michelle Thompson; Photos: Getty, Shutterstock A push to reverse its brain drain is providing the expertise to tackle its domestic problems. When Anil Koul told his friends that he would be moving to India to start working at a government research and development organization, most of the reactions were of disbelief, “even sympathy”, he says. “Some thought it was a crazy idea — moving from the world’s largest health-care giant to a governmental, bureaucratic set-up.” Koul took charge of the Institute of Microbial Technology (IMTECH), in the northern city of Chandigarh, in 2016, relocating from Johnson & Johnson in Belgium, where he was senior director and head of the respiratory diseases group. The move to IMTECH — a branch of India’s government-run Council of Scientific and Industrial Research — was atypical. Few scientists return to India after holding top positions abroad, and fewer still move into the less-lucrative public sector. The scientific landscape that Koul has returned to is vastly different from the one he left in 1998. India is now actively participating in and, in some cases, leading advances in pharmaceuticals, agriculture and energy. The country’s efforts in space exploration are a point of particular national pride. India is preparing for its second Moon mission in 2018 after a successful maiden Mars mission in 2014, and is spreading its wings in international astronomy collaborations. The country will host the third laboratory of the Laser Interferometer Gravitational-wave Observatory (LIGO) project in Hingoli, while the National Centre for Radio Astrophysics in Pune is working on the design of the ‘Telescope Manager’ — the central command system of the Square Kilometer Array. These could be signs that India is enjoying ‘brain gain’ — Indian researchers are returning to their country of birth with newly minted research skills gained while abroad. This is a far cry from the state of the country’s scientific sector 40 years ago, when entire cohorts of graduates from India’s research institutes left for US institutions in search of better economic and educational opportunities. “We are now in an era of globalization and international cooperation,” says immunologist Indira Nath, a member of the Indian National Science Academy. “Scientists going abroad is no longer a big issue.” To-do list But India still faces significant challenges. It is home to one-quarter of the world’s tuberculosis (TB) cases, and continues to be ravaged by mosquito-borne infections including malaria and dengue fever. Around 700 million Indians (56% of the country’s population) have no sanitation, 240 million have no access to electricity and 97 million lack clean drinking water. Natural disasters such as droughts, floods and storms — already common across Southeast Asia — are set to increase in frequency and ferocity as the world’s climate changes. It falls on publicly funded research to take the lead in finding solutions. Since India gained independence from British rule 70 years ago, every prime minister has emphasized the role of science in the country’s development. The current incumbent, Narendra Modi, told a meeting of leading Indian science officials in July that science, technology and innovation are the keys to the progress and prosperity of India and that the government aims to apply science to solve the country’s problems. As various policy initiatives make clear, India is betting on science to address its pressing challenges in energy, environmental protection, food, water, sanitation, health care and unemployment. To achieve this, the government is hoping to find more scientists like Koul, who sees his role as an “opportunity to address bigger social as well as scientific challenges”. This is a tall order, and there’s an elephant in the room. Government funding for Indian research and development has stagnated at around 0.85% of gross domestic product for more than a decade, compared with at least 3% invested by technologically advanced nations such as Denmark, Japan and Sweden. Koul is nonetheless optimistic, and has helped to forge a collaboration between IMTECH and Johnson & Johnson, announced in August. They will work in parallel on four new molecules as potential drug targets and explore shorter, safer and more-effective oral treatment regimens for various strains of TB. Biopharma strides Koul’s collaboration is well placed to take advantage of the success of India’s pharmaceutical industry. Building on the solid foundations of the country’s expertise in academic chemistry, major pharmaceutical companies have set up factories to make affordable generic antibiotics, vaccines, and diabetes and HIV medicines. This strength is paying dividends. According to Hyderabad-based Sathguru Management Consultants, India’s pharmaceutical industry was worth US$18.8 billion in 2010 and $41.1 billion in 2017, and is expected to expand to an estimated $72.4 billion in 2022. One-fifth of the world’s generic drugs are made in India, and around half of this manufacturing is based in Hyderabad. The production of generics has certainly helped the sector, but many people hope to see the country grow beyond manufacturing. “We now need to be recognized for new drugs that address unmet medical needs,” says Kiran Mazumdar-Shaw, managing director of biopharmaceutical company Biocon in Bangalore. The firm’s growing pipeline of biologics ranges from oral insulin for diabetes to monoclonal antibodies for use in cancer therapy. “There is incredible potential within India to become a powerhouse driving biopharma innovation in the Asian market,” says Vaz Narasimhan, himself a second-generation Indian American and chief executive of Novartis, a pharmaceutical company in Basel. The biopharma industry is increasingly looking for new types of talent, says Narasimhan. He gives the example of data analysts and mathematicians who he says are driving the next wave of medical innovation. Meenakshi Diwan works on a solar panel in India’s Odisha state in 2009 — then part of a burgeoning solar grid with a capacity of less than 10 MW. Now, India has a solar capacity of more than 6,000 MW.Credit: Abbie Trayler-Smith/PANOS Narasimhan’s confidence in Indian pharmaceutical development is significant. Most pharma companies have been reluctant to take on costly research and development to combat ‘poor-man’s diseases’ such as malaria and TB, says Soumya Swaminathan, one of India’s leading experts on TB. Swaminathan was appointed deputy director-general for programmes at the World Health Organization in October. She has led an effort to consolidate India’s fragmented TB research, previously supported by four separate institutions, under one umbrella organization — the IndiaTB Research Consortium. “These diseases are our problem,” she says. “And it is pointless expecting Western pharma companies to be interested in them.” When asked, Indian pharmaceutical companies say they are reluctant to take up research in these areas, citing a lack of government funding for early-stage research, and reams of red tape once a product reaches clinical trials. Pollution pains In April, a collaboration between researchers in Germany and Anil Dayakar, an environmental activist in India, reported that Hyderabad’s pharmaceutical manufacturing was polluting the region’s water system to an “unprecedented” degree, and hurrying the development of drug-resistant forms of bacteria (C. Lübbert et al. Infection 45, 479–491; 2017). The researchers suggested that more regulation was needed to prevent further pollution in the region. The pharmaceutical industry in India is not the only source of contamination — pollution is common to many of the country’s cities, and India’s capital, New Delhi, spends its winters wrapped in smog. Krishna Ganesh, director of the Indian Institute of Science Education and Research in Tiruptai, hopes that science can help. “The focus in chemistry is now shifting into areas that involve green and sustainable chemistry,” he says. Research topics include non-toxic chemicals, environmentally benign solvents, organic production and renewable materials. “The main aim should be to get rid of toxic chemicals produced in industrial manufacturing,” and to prevent gases escaping into the atmosphere, he says. Nanotech hopes India’s strength in chemistry has aided its effort to become a leader in the interdisciplinary field of nanotechnology. It’s an especially tempting area of research because there’s a deep vein of funding to mine, says Kizhaeral Subramanian, a researcher in the department of nanoscience and technology at Tamil Nadu Agricultural University in Coimbatore. “Global funding for nanotech had increased from $1 billion in 2000 to $2 trillion in 2016,” he explains. On top of that, Subramanian says that the country has a strong talent pool to draw from owing to the proliferation of nanotechnology degree programmes across the country. From a developmental perspective, the field is a sensible focus as well. As India’s population swells further, the demand for food and clean water is rising. “Nanomaterials can help in water cleansing from bacterial and metal contaminants,” says Ganesh, and nanomaterials may also be able to help with crop protection. For example, Tamil Nadu Agricultural University is researching the production of non-toxic herbicides and fertilizers, as well as emulsions and films that improve the shelf life of fruits and vegetables. Energy dark holes Of India’s 1.3 billion citizens, almost 20% still lack electricity. To help combat this, the country has launched an ambitious renewable-energy plan, broadly focused on solar and wind power. Overall, the country hopes to produce 175 gigawatts from renewable energy sources by 2022 — meeting around 20% of the country’s predicted electricity demand. According to Tata Narasinga Rao, associate director of the International Advanced Research Centre for Powder Metallurgy and New Materials in Hyderabad, India enjoys between 250 and 300 clear sunny days each year — ideal for solar technologies. The energy plan is helped by cheap land, a vast pool of talent to draw from and enthusiastic government support and infrastructure, says Rao. In a review published this year, the International Renewable Energy Agency lists India among the six countries — with Brazil, China, Germany, Japan and the United States — that accounted for most of the renewable-energy jobs in 2016. One research programme, the Solar Energy Research Institute for India and the United States, brings together the Indian Institute of Science in Bangalore and the National Renewable Energy Laboratory in Denver, Colorado, to accelerate the development of solar electric technologies by lowering the cost of production. As part of this venture, scientists developed a new nanotechnological solar absorption system in 2015. The prototype, Rao says, costs half as much as the non-vacuum tubes currently used in solar collectors worldwide and have enormous potential for industry. There are local quirks to take into account before any company starts cashing in on a solar goldmine. Manufacturers still haven’t worked out what to do about monkeys and rats, which relentlessly and indiscriminately chew telephone, electrical and fibre-optic cables across the subcontinent. Meanwhile, Indian researchers are using crop residues, normally burnt as waste by farmers, to develop advanced biofuel systems and products such as biogas and biomaterials. “India’s strong knowledge base in biotechnology, chemistry, engineering and process engineering can be tapped to do research in the biofuel sector,” says Ahmad Kamal, a chemist at the Indian Institute of Chemical Technology in Hyderabad. Calling young scientists back To achieve its grand ambitions, India needs to nurture its new-found brain gain, and is fighting to make itself as attractive as possible through the Department of Science and Technology (DST), one of India’s largest research-funding agencies. In June, for example, the DST announced endowments of $10,000 a month for researchers who choose to move to India from labs overseas. Lipi Thukral, a computational biologist at the Institute of Genomics and Integrative Biology in New Delhi, thinks that the Indian research sector has been unfairly stereotyped abroad. “It is a myth that Indian salaries for scientists are low. They are very good when one factors in the purchasing power of the rupee,” she says. “One can do great science here, too.” Thukral uses high-performance computers to study the movement of biological structures and to model protein folding. After a PhD in Germany, and a postdoc in the UK, she returned to India in 2012 under another DST scheme. Shalini Gupta, a chemical engineer at the Indian Institute of Technology Delhi, returned to India in 2009 after earning a PhD in chemical and biomolecular engineering from North Carolina State University, in Raleigh, and a postdoc from Imperial College London. Gupta’s team is working on cheap, portable medical tools to rapidly diagnose sepsis, a serious complication of many bacterial infections. For her, India makes the perfect laboratory. “We have the advantage of having ready access to patients, samples and field trials.” Meanwhile, the Indian government plans to develop 20 existing universities into ‘world class’ research institutions with an incentive of $1.54 billion of funding. Policymakers hope this will free the country’s best universities from reliance on the country’s grant commission and associated red tape, and encourage greater institutional autonomy. “There are always challenges in working in a third-world country, but India’s role in the development of next-generation technology cannot be ignored, especially in the fields of pharmaceuticals, agriculture, energy and environment,” says Gupta. “If you are situated close to a problem, you have a bigger advantage in terms of solving it.” Nature 552, S41-S43 (2017) doi: 10.1038/d41586-017-07771-y
-
- insight
- Posted 4 months ago
Ageism in Academic Jobs in India
Farah Ishtiaq shares her experience on how age and success are linked in acquiring faculty positions in India India has recently been portrayed as a land of abundant opportunity in academia, investing seriously in research and development to attract skilled scientists. The government has introduced several attractive funding opportunities, with the aim of bringing back scientists working abroad to establish a long-term career here, and improving the overall research infrastructure. Wellcome Trust/DBT India Alliance (WT/DBT) fellowships, for example, have no age or nationality restrictions, relying on qualifications, research experience, career trajectory and the candidate’s determination to establish their own independent research. The WT/DBT India alliance was initiated to develop a large cohort of internationally competitive researchers and help in developing scientific excellence and leadership; a model recently adopted and launched by the Alliance for Accelerating Excellence in Science in Africa (AESA) as well. Since Africa shares a similar burden of healthcare with India, as well as many workplace challenges, Indian scientists are perceived as key collaborators in this mission. There’s a problem here though: age limits on academic positions. Prospective candidates for assistant professor posts in India are preferred by academic institutions to be younger than 35. Although funding bodies are not hiring agencies, the age limit imposed on faculty positions by academic institutions sabotages the driving principle behind these new funding opportunities — the current system is unable to absorb enough competent, experienced scientists. The dilemma for early-career researchers is serious; many fellows are facing this harsh reality and an uncertain future. Every research position has a maximum age limit in India; from a junior research fellow (JRF), with a cut off at 28 years old, to postdoctoral researchers where it is 35 (or 40 years for women). These limits put the Indian academic landscape in stark contrast with many other countries that also follow a tenure-track system. Overall, this makes India a viable option and destination only for scientists of a selected age class. And it certainly gets more complicated for women who want to pursue a career in science and raise a family, with very little allowance made for taking time out for such. I am now in my 40s, which prevents me from being offered an entry-level faculty position. I am also a recipient of a WT/DBT India Alliance fellowship. My funding allowed me to establish an independent laboratory to study the ecology and evolution of emerging infectious diseases in wild bird populations, but despite this incredible research opportunity, I feel my career clock is ticking faster than ever. Getting funding to do science is no longer a problem, but academic policies that prevent competent scientists becoming established are preventing me from succeeding. I feel redundant — surely the quality of my science should be the focus rather than my age? What I would have done differently Hopefully, this should give others like me some insight into avoiding some of the mistakes I made. First, I should have found a trustworthy mentor who could have helped me to navigate my career path. Never put all your eggs in one basket. I should have pitched my grant idea to multiple host institutions to maximise my likelihood of finding an institution that would guarantee a more permanent position by this stage. Do your homework in understanding the system and host academic institution. Even though I deferred my fellowship for a year as my daughter was too little to be left in a crèche, I realise I should have used that time to negotiate or better understand the policy or the institute’s vision for a research fellow like me. Many academic institutions have no guidelines on the role, involvement and career development of academic fellows. Many academics fail to understand the role and potential of fellows like me and often consider them just as an extended postdoc — not as a long-term prospect or potential collaborator. Hence, I did not get enough of an opportunity to teach and to mentor PhD students. Having my own PhD students would have bolstered my career at this stage, and allowed me to evolve as a mentor. Local advice & mindset I’ve received various pieces of advice for improving my faculty application and to enhance my chances of a secure job — this was to publish my current research: i) without foreign authors; and ii) as senior or first author in more prestigious journals such as Science, Nature or PNAS. Whilst the first is possible, the second is easier said than done. Apparently, that was the only thing my CV was missing — a clearer demonstration of my calibre and merit as an independent researcher. Interestingly, for established faculty struggling to earn tenure in India, the culture emphasises quantity of publications rather than quality. And, whilst the second piece of advice (primarily from engineers, cell or molecular biologists) is sound, what was missing was perspective on research in the field of ecology — collecting and publishing groundbreaking ecology data in top journals can take years longer than other disciplines. The journals I have been publishing in are not familiar to some of the members of recruitment panels I’ve met with. I have even been asked if ‘Ibis’ and ‘Parasites & Vectors’ were proper journals. Should India be a role model for developing nations? We are struggling to keep our skilled workers, despite the spending per researcher being equivalent to a developed nation like the UK. I hope other developing countries don’t replicate the above policies, as they certainly don’t help to address some of the major longer-term developmental challenges, including a shortage of researchers. In India, with only 200,000 full time researchers (and only 14% of them women) from a population of 1.3 billion, new research institutes currently being developed end up short of skilled workers and blinkered to new research areas. This all said, I am still very excited. I have a competitive edge and enthusiasm for research where I can play a leading role in high-quality research. Perhaps, it’s time to explore science career options elsewhere, maybe in Africa, and hope no one will question my age?
-
- insight
- Posted 4 months ago
Breaking the Curse on Science
Open data can help us avoid inherent biases in our work, says Ayushi Sood Better Science through Better Data writing competition winner Ayushi Sood Recently, an economist friend told me that “scientific inquiry is inherently cursed.” At first I was offended. But I had to agree after he elaborated further – science today suffers from something economists enigmatically call the “winner’s curse”. The first scientific journals were print editions — something akin to a printed memo — circulated among researchers to update them of the findings of others in the field. To submit a paper for publication, only the observations required to prove results needed to be included in a manuscript, and rightly so: if every paper included every shred of data, journals would run into thousands of pages. This means, though, that what was communicated to the scientific community was only a fraction of what could have been communicated: only the observations that were ‘winners’ – the ones which best supported a result – would be presented, and the others would be effectively relegated to obscurity. Although we’re not limited by paper and page counts today, the same pattern of data use continues. This leads us to the problem of the winner’s curse: by the process of selection, the ‘winning’ observation oversells itself. In economics, the winner’s curse refers to situations in auctions where the winner tends to overpay, because the actual value of the product is the average of the bids, not the highest bid. In scientific research, the curse takes hold in scientists who aim for publication in the most selective journals, with the most impressive results being favored. This ignores all the other results — the ones which weren’t so impressive — while giving disproportionate importance to the ‘winning result’. The problem with this phenomenon isn’t immediately evident — isn’t the result what actually matters? The data is, after all, just a tool, necessary only to prove what’s important — the conclusion. In looking for conclusions in data, however, researchers can forget to ask: “does the conclusion effectively justify my repeated sampling of the real world?” In other words, is reality accurately reflected by the dataset presented? All the observations we take, whether they are inconclusive, negative, or ‘winners’, represent an analysis of the natural world. By only reporting the ones that work, the other sampling efforts cannot be used by anyone else. This process confers on a small, selected number of observations the authority to predict an unpredictable future! Back in the auction house, this would mean the value of the product is set only by the winning bid. When we report only the best set of data, we are relegating the less impressive observations to obscurity, even though these also represent an analysis of the real world, with real potential to inform. So what does this mean for us? How should scientists avoid falling into the trap of the winner’s curse? One way would be to save, store and share all data — not just positive results. We are only human. By making our data openly accessible, we can avoid internal inconsistencies. The smallest of mistakes would be corrected by fresh eyes poring over the very same data. More importantly, open data could prove to be a shot in the arm for scientific inquiry as a whole. What data I find important may be perfect for my study, yet a small cluster of ignored numbers in my dataset could lead to a breakthrough for someone else, possibly in a way that I could never have imagined! Gene expression data in cancer cells could provide insights into cell signaling pathways in neurodegenerative disorders. Algal bloom observations in polluted lakes could help in effective biomass production for algal biofuel. The analysis and application of open data could usher in a new age of scientific connectivity, with the available knowledge transcending traditional discipline boundaries in way never seen before. Well, if it’s so good, why hasn’t open data been the norm since science began? We come back to the thousand-page journal here — the question wasn’t of why not, but of how. Transmitting every single byte of data through papers and talks was impossible before the advent of computers and the emergence of the internet in the 1990s. In 2017, however, we have the tools at our disposal to store, parse, organize and retrieve every single digit. The burgeoning field of data science and analysis is ours to exploit, just waiting to script the next scientific success story. So, I have to hand it to the economists on this one — the winner’s curse is alive and kicking in science. But, like any good scientist, I’m thinking of solutions, and every clue suggests that open data, accessibility and collaboration could be just the spell that breaks this curse. Ayushi Sood is an undergraduate microbiology student at Amity University, India. Her interest in what makes life tick made her fall in love with bacteria and astrobiology, and her passion for making scientific research more efficient and accessible led her to explore bioinformatics. She has been a part of research projects investigating nanoparticle-plant interactions, transgenic algae, and bacteria-algae associations. Ayushi enjoys dance, writing, and functional DIY craft. You can follow her work on Bitesize Bio and connect with her on LinkedInor Facebook.